SITE INSPECTION WORKSHEETS

CERCLIS IDENTIFICATION NUMBER

NJD982530073

	SITE LOCATION		
SITE NAME: LEGAL, COMMON, OR DESCRIPTI	IVE NAME OF SITE		
114.37.303	SINIANG.	1010	
STREET ADDRESS, ROUTE, OR SPECIFIC LOC	CATION IDENTIFIER	1.401	
CHARLES AND W	DATE	I ZIP CODE	TELEPHONE
			1
COORDINATES: LATITUDE and LONGITUDE	7 N. J.	108030	TION
		, RANGE, AND SEC	TION
39 53 26 75 07	45"		The Water
	PERATOR IDENTIF		
OWNER GLOUCESTER CITY	RETAINS OPERATOR	. ABAND	
RESALE RIVHTS		. AGAND	ONED
OWNER ADDRESS	OPERATOR	RADDRESS	
512 MONMOUTH STR	Carried State of the State of t		
CITY	CITY		
GLOUCE STER CITY	and the second		
STATE ZIP CODE TELEPHON	NE STATE	ZIP CODE	TELEPHONE
N. J. 08030 (609) 45	56.3970		()
11. 4. 303 43			The second second
- 5	SITE EVALUATION		year the second
AGENCY/ORGANIZATION			
N TOTAL, DPF	CR. SA		
INVESTIGATOR	,		
. DAVID E. TRICO	-6		
CONTACT			
KEN KLOO	2		
ADDRESS			
300 HORIZON CEN	VIER		ZIP CODE
CITY	STATE		
	1 1		08625
ROBBINSU : C	I IV	. 7.	00023

GENERAL INFORMATION

Site Description and Operational History: Provide a brief description of the site and its operational history. State the site name, owner, operator, type of facility and operations, size of property, active or inactive status, and years of waste generation. Summarize waste treatment, storage, or disposal activities that have or may have occurred at the site; note whether these activities are documented or alleged. Identify all source types and prior spills, floods, or fires. Summarize highlights of the PA and other investigations. Cite references.

SANBORN FIRE INSURANCE MARS SHIP YARD PERATED BU LANG DATING BACK TO THE GALLY FUNCTIONING AS A. SHIPYARD ANA MANUFACTURING OF PRODUCTS AS PIPING AND SHINGLES , DATES 19505 THROUGH THE 10405 WHILE OF THE RUBBEROID COMPANY. BY VANGUATES VINYC ARCA, RUNOFF RACK, INDOOR FLOOR TRENCHES STORAGE TANK CONTAINING CONTAINER 12ED HAZARDOUS WASTE on THE USE PA COMPLETED ON JULY 2, 1993.

GENERAL INFORMATION (continued)

Site Sketch: Provide a sketch of the site. Indicate all pertinent features of the site and nearby environments including sources of wastes, areas of visible and buried wastes, buildings, residences, access roads, parking areas, fences, fields, drainage patterns, water bodies, vegetation, wells, sensitive environments, and other features. **KOCH FUELS** DRAINAGE DITCH TRUCK ENTRY POINT S-2 **GRAVEL FILL** FORMER DRUM RACK FORMER TRANSFORMER PAD FIRE WALL STORAGE SILOS OPEN FLOOR DITCHES **VANGUARD VINYL SIDING** ABOVEGROUND TANK CONTAINING ASSESTOS QUALITY CONTROL LAB FIRE WALL

GENERAL INFORMATION (continued)

Source Descriptions: Describe all sources at the site. Identify source type and relate to waste disposal operations. Provide source dimensions and the best available waste quantity information. Describe the condition of sources and all containment structures. Cite references.

SOURCE TYPES

Landfill: A man-made (by excavation or construction) or natural hole in the ground into which wastes have come to be disposed by backfilling, or by contemporaneous soil deposition with waste disposal.

Surface Impoundment: A natural topographic depression, man-made excavation, or diked area, primarily formed from earthen materials (lined or unlined) and designed to hold an accumulation of liquid wastes, wastes containing free liquids, or sludges not backfilled or otherwise covered; depression may be wet with exposed liquid or dry if deposited liquid has evaporated, volatilized or leached; structures that may be described as lagoon, pond, aeration pit, settling pond, tailings pond, sludge pit; also a surface impoundment that has been covered with soil after the final deposition of waste materials (i.e., buried or backfilled).

Drum: A portable container designed to hold a standard 55-gallon volume of wastes.

Tank and Non-Drum Container: Any device, other than a drum, designed to contain an accumulation of waste that provides structural support and is constructed primarily of fabricated materials (such as wood, concrete, steel, or plastic); any portable or mobile device in which waste is stored or otherwise handled.

Contaminated Soil: An area or volume of soil onto which hazardous substances have been spilled, spread, disposed, or deposited.

Pile: Any non-containerized accumulation above the ground surface of solid, non-flowing wastes; includes open dumps. Some types of waste piles are:

Chemical Waste Pile:

A pile consisting primarily of discarded chemical products, by-products, radioactive wastes, or used or unused feedstocks.

Scrap Metal or Junk Pile:

A pile consisting primarily of scrap metal or discarded durable goods (such as appliances, automobiles, auto parts, batteries, etc.) composed of materials containing hazardous substances.

· Tailings Pile:

A pile consisting primarily of any combination of overburden from

a mining operation and tailings from a mineral mining,

beneficiation, or processing operation.

· Trash Pile:

A pile consisting primarily of paper, garbage, or discarded non-

durable goods containing hazardous substances.

Land Treatment: Landfarming or other method of waste management in which liquid wastes or sludges are spread over land and tilled, or liquids are injected at shallow depths into soils.

Other: Sources not in categories listed above.

GENERAL INFORMATION (continued)

Source Description: Include description of containment per pathway for ground water (see HRS
Table 3-2), surface water (see HRS Table 4-2), and air (see HRS Tables 6-3 and 6-9).
<u>.</u>
ALL CONTAINERIZED HAZARDOUS WASTE ON SITE WAS REMOVED
•
AS PART OF A REMOVAL ACTION CONDUCTED BY THE USERA
AS PART OF A ISSUED
CONTRIVIALE TO A OTT ALS CONTRIVIALATE
SITE PATH WAYS WHICH PERSIST TO NATE ARE CONTAMINATE
SOIL IN THE VICINITY OF THE FOLLOWING ALEAS OF
CONCERN I. INDOOR AND OUTDOOK DRUM STORAGE RACKS
2. INDOR TRENCHES
3. AREM SUREUNDING 10,000 gal ASST
3, ARBY SURPLUTVOTIVE TO TO THE
4. AREA SURROUNDING EXCAUATED DRUM
Hazardous Waste Quantity (HWQ) Calculation: SI Tables 1 and 2 (See HRS Tables 2-5, 2-6,
and E-01
and 5-2).
· ·
CONTAMINATED SOIL - 0.5 ACES + 0.78 =
CONTAMINATED SOIL U.S ALAU . U.76 -
AREA/MULTIPLE SOURCE 0.64
AREA MULTIPLE SOURCE O. 64
•
·
nutra matricip
Attach additional pages if pecessary HWQ = 10

SI TABLE 1: HAZARDOUS WASTE QUANTITY (HWQ) SCORES FOR SINGLE SOURCE SITES AND FORMULAS FOR MULTIPLE SOURCE SITES

		6:-					
/Column 63		_l (assid	gle Source Sites aned HWQ scores)				
(Column 1)	(Column 2)	(Column 3)	(Column 4)				
TIER	Source Type	HWQ = 10	HWQ = 100				
A Hazardous Constituent Quantity	N/A	HWQ = 1 if Hazardous Constituent Quantity data are complete HWQ = 10 if Hazardous Constituent Quantity data are not complete	>100 to 10,000 lbs				
B Hazardous Wastestream Quantity	N/A	≤ 500,000 lbs .	>500,000 to 50 million lbs				
	Landfill	≤ 6.75 million ft ³ ≤ 250,000 yd ³	>6.75 million to 675 million ft ³ >250,000 to 25 million yd ³				
	Surface impoundment	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³				
	Drums	≤1,000 drums	>1,000 to 100,000 drums				
C	Tanks and non-drum containers	≤50,000 gailons	>50,000 to 5 million gallons				
	Contaminated soil	≤6.75 million ft ³ ≤250,000 yd ³	>6.75 million to 675 million ft ³ >250,000 to 25 million yd ³				
	Pile ·	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³				
	Other	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³				
	Landfill	≤340,000 ft ² ≤7.8 acres	>340,000 to 34 million ft ² >7.8 to 780 acres				
D	Surface impoundment	≤1,300 ft ² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres				
Area	Contaminated soil	≤3.4 million ft ² ≤78 acres	> 3.4 million to 340 million ft ² > 78 to 7,800 acres				
	Pile	≤1,300 ft ² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres				
	Land treatment	≤27,000 ft ² ≤0.62 acres	>27,000 to 2.7 million ft ² >0.62 to 62 acres				

TABLE 1 (CONTINUED)

Single Source	Citoo	Multiple		
Single Source (assigned HWQ s	cores)	Source Sites		
(Column 5) HWQ = 10,000	(Column 6) HWQ = 1,000,000	(Column 7) Divisors for Assigning Source WQ Values	(Column 2) Source Type	(Column 1) TIER
>10,000 to 1 million lbs	> 1 million lbs	ibs + 1	N/A	A Hazardous Constituent Quantity
>50 million to 5 billion lbs	> 5 billion lbs	lbs + 5,000	N/A	B Hazardous Wastestream Quantity
>675 million to 67.5 billion ft ³	> 67.5 billion ft ³	ft ³ + 67,500	Landfill	
>25 million to 2.5 billion yd ³	> 2.5 billion yd ³	yd ³ + 2,500		
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million yd ³	ft ³ + 67.5 yd ³ + 2.5	Surface Impoundment	•
>100,000 to 10 million drums	> 10 million drums	drums + 10	D	
>5 million to 500 million gallons	> 500 million gallons	gallons + 500	Drums Tanks and non-drum containers	C Volume
>675 million to 67.5 billion ft ³ >25 million to 2.5 billion yd ³	> 67.5 billion ft ³ > 2.5 billion yd ³	ft ³ + 67,500 yd ³ + 2,500	Contaminated Soil	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million yd ³	ft ³ + 67.5 yd ³ + 2.5	Pile	;
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million yd ³	ft ³ + 67.5 yd ³ + 2.5	Other	
>34 million to 3.4 billion ft ² >780 to 78,000 acres	> 3.4 billion ft ² >78,000 acres	ft ² + 3,400 acres + 0.078	Landfill	
>130,000 to 13 million ft ² >2.9 to 290 acres	> 13 million ft ² > 290 acres	ft ² + 13 acres + 0.00029	Surface Impoundment	D
> 340 million to 34 billion ft ² > 7,800 to 780,000 acres	> 34 billion ft ² > 780,000 acres	ft ² + 34,000 acres + 0.78	Contaminated Soil	Area
> 130,000 to 13 million ft ² > 2.9 to 290 acres	> 13 million ft ² > 290 acres	ft ² + 13 acres + 0.00029	Pile	
>2.7 million to 270 million ft ² >62 to 6,200 acres	> 270 million ft ² > 6,200 acres	ft ² + 270 acres + 0.0052	Land Treatment	

HAZARDOUS WASTE QUANTITY (HWQ) CALCULATION

For each migration pathway, evaluate HWQ associated with sources that are available (i.e., incompletely contained) to migrate to that pathway. (Note: If *Actual Contamination Targets* exist for ground water, surface water, or air migration pathways, assign the calculated HWQ score or 100, whichever is greater, as the HWQ score for that pathway.) For each source, evaluate HWQ for one or more of the four tiers (SI Table 1; HRS Table 2-5) for which data exist: constituent quantity, wastestream quantity, source volume, and source area. Select the tier that gives the highest value as the source HWQ. Select the source volume HWQ rather than source area HWQ if data for both tiers are available.

Column 1 of SI Table 1 indicates the quantity tier. Column 2 lists source types for the four tiers. Columns 3, 4, 5, and 6 provide ranges of waste amount for sites with only one source, corresponding to HWQ scores at the tops of the columns. Column 7 provides formulas to obtain source waste quantity values at sites with multiple sources.

- Identify each source type.
- 2. Examine all waste quantity data available for each source. Record constituent quantity and waste stream mass or volume. Record dimensions of each source.
- 3. Convert source measurements to appropriate units for each tier to be evaluated.
- 4. For each source, use the formulas in the last column of SI Table 1 to determine the waste quantity value for each tier that can be evaluated. Use the waste quantity value obtained from the highest tier as the quantity value for the source.
- Sum the values assigned to each source to determine the total site waste quantity.
- 6. Assign HWQ score from SI Table 2 (HRS Table 2-6).

Note these exceptions to evaluate soil exposure pathway HWQ (see HRS Table 5-2):

- The divisor for the area (square feet) of a landfill is 34,000.
- The divisor for the area (square feet) of a pile is 34.
- Wet surface impoundments and tanks and non-drum containers are the only sources for which
 volume measurements are evaluated for the soil exposure pathway.

SI TABLE 2: HWQ SCORES FOR SITES

Site WQ Total	HWQ Score
0	0
1ª to 100	1 ^b
> 100 to 10,000	100
> 10.000 to 1 million	10,000
> 1 million	1,000.000

a If the WQ total is between 0 and 1, round it to 1.

b If the hazardous constituent quantity data are not complete, assign the score of 10.

SI TABLE 3: WASTE CHARACTERIZATION WORKSHEET

Site Name:	VANX-UARD	· VINIYC SININ	<u></u>	References ST	ATTACH MENT U
			•		
Sources:	CONTAMINATED	Sail			
1. <u> N D c</u>	FLOOR TREN	CHES 4. AD-JAC	ENT EXCAUATE	Deum 7.	
2. INDEC	NT - 10,000 DRUM			9	

Γ			·						SUR	FACE	WATER	PATHW	/AY			
		HAZANDOUS	TOVIOLTY	GRO WAT PATH	rer	t .	OVE	RLAND/	FLOOD	MIGRAT	ION		GROUND WATER TO SURFACE WATER			
C-1	SOURCE	SUBSTANCE	TOXICITY	GW Mobility (HRS Table 3-8)	Tox/ Mobility Vakto (HRS Table 3-9)	Per (HRS Tables 4-10 and 4-11)	Tox/Per Value (I INS Table 4-12)	Bioac Pot. (HRS Tablo 4-15)	Tox/ Pers/ Bioac Value (HRS Table 4-16)	Ecotox (HRS Table 4-19)	Ecolox/ Pers (HRS Table 4-20)	Ecotox/ Pers/ Bioacc Value (HRS Table 4-21)	Tox/ Mob/ Pers Value (HRS Table 4-26)	Tox/ Mob/ Pers/ Bioacc Value (HAS Table 4-28)	Ecolon/ Mob/ Pers Value (HRS Table 4-29)	Mob/ Per/ Bioacc Value (HRS Table 4-30)
_		ARSENIC	10000	.01	100	1.0	10000	50	500000	10						
	 	LEAD	10000	.0002	0.7	1.0	10000	5000	5×107	1000						/
		ANTIMONY	10000	.01	100	1.0	10000	0.5	5000			<u> </u>			/	
		BENZL (a)	10000	-000000m	50000	1.0	10000	50000	2× 108	10000		\			/	
		BENTO (K)	NE	.00002	*poas	1.0	1.0	50000	50000			<u> </u>		/		
				ļ				 			 					·
		<u> </u>	<u> </u>	 			 	1				<u> </u>				
				ļ	<u> </u>	 	 	 								
		 	 		 										<u> </u>	
	<u></u>		 	 										ļ	1	
			 	 	 	 						<u> </u>	<u> </u>		 	—
		 		1						ļ	_/	<u> </u>			 	 \
	<u> </u>								<u> </u>	<u> </u>	\angle	<u> </u>	<u></u>	<u> </u>	<u></u>	<u> </u>

1, 2, 3, 0

Ground Water Observed Release Substances Summary Table

On SI Table 4, list the hazardous substances associated with the site detected in ground water samples for that aquifer. Include only those substances directly observed or with concentrations significantly greater than background levels. Obtain toxicity values from the Superfund Chemical Data Matrix (SCDM). Assign mobility a value of 1 for all observed release substances regardless of the aquifer being evaluated. For each substance, multiply the toxicity by the mobility to obtain the toxicity/mobility factor value; enter the highest toxicity/mobility value for the aquifer in the space provided.

Ground Water Actual Contamination Targets Summary Table

If there is an observed release at a drinking water well, enter each hazardous substance meeting the requirements for an observed release by well and sample ID on SI Table 5 and record the detected concentration. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population using the well as a Level I target. If these percentages are less than 100% or all are N/A, evaluate the population using the well as a Level II target for that aquifer.

Sample ID	GROUND WATER C	Bckgrd. Conc.	l oxicity/	References				
Sample in	Trazardous Constants							
						,		
								• .
							•	
	Highest Tox	icity/Mobility						
OL TABLE E.	GROUND WATER	,		N TARGET	rs			
	GROOND WATER		Level I	Level II	Populațion Se	rved	Reference	s
Sample ID	Hazardous Substance	Conc, (µg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RID	% of RID
- Campio is								
		L	B .					
			Highest Percent	·	Sum of Percents		Sum of Percents	
. Well ID:			Highest Percent	Level II	Percents	orved	Percents	es
		Conc.	Percent Level I Benchmark Conc.	% of	Percents	orved % of Cancer Risk Conc.	Percents	s % of RID
Well ID:	Hazardous Substance	1	Percent Level I Benchmark	% of	Percents Population Se	% of Cancer	PercentsReference	

Highest Percent Sum of Percents Sum of Percents

GROUND WATER PATHWAY GROUND WATER USE DESCRIPTION

	Describe Ground Water Use within 4 Miles of the Site: Describe generalized stratigraphy, aquifers, municipal and private wells
	THE FACILITY IS SITUATED NEAR THE WESTERN BOUNDARY OF THE
l	ATLANTIC COASTAC PLAIN PHYSICGRAPHIC REGION AND IS
	UNDERLAIN BY UNCONSOLIDATED SEDIMENTS OF QUATERNARY,
	TERTIARY AND CRETA CEOUS AGE CONSISTING OF ALTERNATING
	LAYERS OF SANDS, SICTS AND CLAYS. THESE SEDIMENTS,
ı	ESTIMATED TO BE 250 FEET THICK, THICKEN EASTWARD
ŀ	TOWARDS THE ATLANTIC OCEAN. THE MOST PRODUCTIVE SOURCE
	OF GROWN WATER IN CAMBEN COUNTY IS THE POTEMAC-
	RARITAN - MAGGTHY AQUIFER SYSTEM WHICH CONSISTS OF
	ARTIFIES COMPOSED OF SAND AND GRAVEL AND CONFINING
	UNITS OF SICTS AND CLAYS.

Show	Calculations apportionmen	of Ground	Motor	Dalmida	111				
Descriptor		or Glound	AASIGL	DUUKING	water	Populations	for	each	Acuifor.
LLOAIGE	apportionmen	it calculations	for blen	ded eunnh	- cuciom				udanei.
County	2405000		101 01611	ged anhhià	System	.		_	
County	average numb	per of person	s per ho	usehold:	-	Reference			
		•				TO DESERTICE	·		

GLOUCESTER CITY WATER DEPT. - FOUR WELLS >1/2-1 mile, 12,500 people BROOKLAWN WATER DEPT. - THREE WELLS >1/2-1 MILE, 2,520 PEOPLE SERVICED. NATIONAL PARK WATER DEPT. - TWO WELLS > 3-4 MILES, 3,550 PEOPLE SERVICED. N.J. AMERICAN WATER DEPT. - FIVE WELLS > 3-4 MILES, TWO WELLS > 2-3 MILES. SERVICES 23,440 PEOPLE. COLLINGSWOOD WATER DEPT. - SIX WELLS > 3-4 MILES, ONE WELL >2-3 MILES. SERVICES 20,000 PEOPLE. BELLMAWR WATER DEPT. - TWO WELLS >1-2 MILES, TWO WELLS >2-3 MILES. SERVICES 9,520 PEOPLE. CAMDEN CITY WATER DEPT. - THREE WELLS > 3-4 MILES, SERVICE 20,000 PEOPLE . WEST DEPTFORD WATER DEPT. - ONE WELL >2-3 MILES, ONE WELL >3-4 MILES, PART OF AN INTERCONNECTED SYSTEM WITH A TOTAL OF SEVEN WELLS. SYSTEM SERVICES 19,000 PEOPLE. WESTVILLE WATER DEPT. THREE WELLS >1-2 MILES, 7000 PEOPLE SERVICED. DEPTFORD TOWNSHIP MUA - ONE WELL >2-3 MILES, SERVICES 1,100 PEOPLE. WOODBURY TOWNSHIP WATER DEPT. - TWO WELLS >3-4 MILES. PART OF AN INTERCONNECTED SYSTEM COMPRISED OF FIVE WELLS, THIS SYSTEM SERVICES 11,920 PEOPLE. HADDON TWP. WATER DEPT. - FOUR WELLS >3-4 MILES, 12,000 PEOPLE SERVICED. TWO DOMESTIC WELLS ARE LOCATED WITHIN A 1 MILE RADIUS OF THE SITE. APPROXIMATELY 64 RESIDENTS ARE SERVICED BY PRIVATE WELLS IN A >3-4 MILE RADIUS.

GROUND WATER PATHWAY WORKSHEET

LIKELIHOOD OF RELEASE	Score	Type	Refs	
OBSERVED RELEASE: If sampling data or direct observation				
support a release to the aquifer, assign a score of 550. Record	}			
observed release substances on SI Table 4.				
2 POTENTIAL TO BELEASE: Depth to aquifer: WENDWAfeet. If			SI	NARRATIL
sampling data do not support a release to the aquifer, and the site is	6		/-/	40°
in karst terrain or the depth to aquifer is 70 feet or less, assign a	500	E		ちどこ
score of 500; otherwise, assign a score of 340. Optionally,			1	ATTACHMEN
evaluate potential to release according to HRS Section 3.			<u> </u>	
LR =	500	┛.		. W
		•	•	
TARGETS Are any wells part of a blended system? Yes / No		T		
If yes, attach a page to show apportionment calculations.				
3. ACTUAL CONTAMINATION TARGETS: If analytical evidence				
indicates that any target drinking water well for the aquifer has been	1	ł	i	
exposed to a hazardous substance from the site, evaluate the			1	
factor score for the number of people served (SI Table 5).		1		
reater source for the rights of people service (İ		1	
Level I: people x 10 =				
Level II: people x 1 = Total =				
4. POTENTIAL CONTAMINATION TARGETS: Determine the number	7		SI N	ARRATINE
of people served by drinking water wells for the aquifer or overlying	1			
aquifers that are not exposed to a hazardous substance from the	a 1445,6	E	· S	ŧC
site; record the population for each distance category in SI Table 66	a			ATTACHME
or 6b. Sum the population values and multiply by 0.1.				
5. NEAREST WELL: Assign a score of 50 for any Level I Actual Contamination Targets for the aquifer or overlying aquifer. Assign	a			
score of 45 if there are Level II targets but no Level I targets. If no	_			
Actual Contamination Targets exist, assign the Nearest Well score	a	E	SI	NARRATICE
from SI Table 6a or 6b. If no drinking water wells exist within 4 miles	s, l 7			TION
assign 0.			30	_1
6 WELLHEAD PROTECTION AREA (WHPA): If any source lies				ATTACIMEN
within or above a WHPA for the aquifer, or if a ground water				W
observed release has occurred within a WHPA, assign a score of			ļ	1
20; assign 5 if neither condition applies but a WHPA is within 4			-	
miles: otherwise assign 0.			+	┥
7. RESOURCES: Assign a score of 5 if one or more ground water				1.
resource applies; assign 0 if none applies.		1		
Irrigation (5 acre minimum) of commercial food crops or	,			İ
commercial forage crops		1	1	
 Watering of commercial livestock Ingredient in commercial food preparation 		1		1
Supply for commercial aquaculture		ļ	1	
 Supply for confine call addactifies Supply for a major or designated water recreation area, 				
excluding drinking water use				
Choing arming mater				
Sum of Targets	T= 1454.6	<u> </u>		

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS

SI Table 6a: Other Than Karst Aquifers

٠.			Ī., .		Population Served by Wells within Distance Category											1	
	Distance from Site	Рор.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 . to 3,000,000	· Pop. Value	Ref.
	0 to $\frac{1}{4}$ mile	0	20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455	O.	SI NARATIVE GW SEC.
	> \frac{1}{4} \to \frac{1}{2} \\ mile	0	18	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		70 JOC 1
	> 1/2 to 1	15,000	9	1	5	17	52	167	523	1,669	5,224	16,684	52,239	166,835	522,385	5,224	
C-16	> 1 to 2 miles	11, 30	5	0.7	3	10	30	94	294	939	2,939	9,385	29,384	93,845	293,842	2,939	
	> 2 to 3 miles	24,966	3	0.5	2	7	21	68	212	678	2,122	6,778	21,222	67,777	212,219	2,122.	
	>3 to 4 miles	90,875	2	0.3	1	4	13	42	131	417	1,306	<u>(4.171</u>	13,060	41,709	130,596	4,171	
	Nearest \	Weil =	9										L	<u></u>	Sum =	14456	

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS (continued)

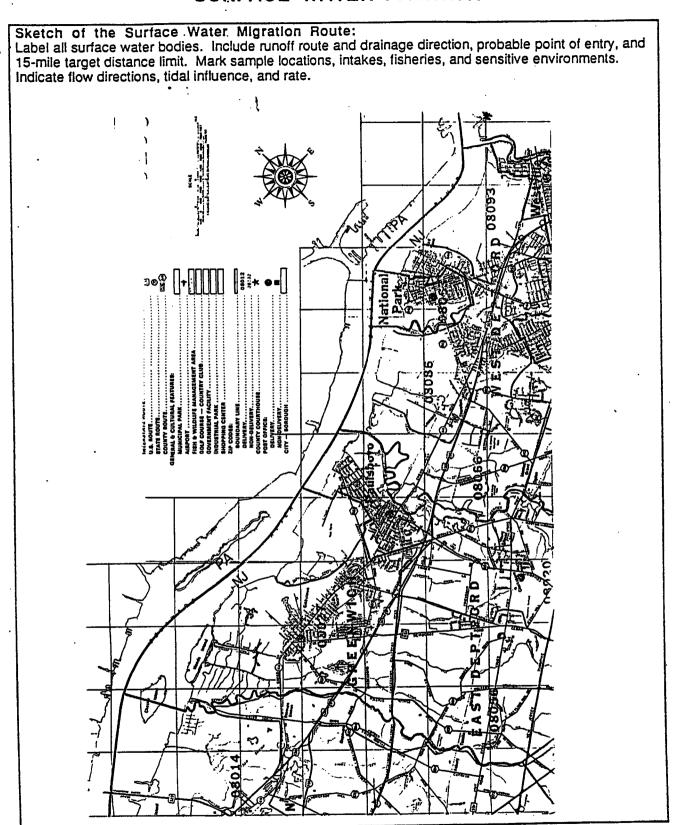
SI Table 6b: Karst Aquifers

ı								Populat	on Serve	d by Wel	s within Di	stance Cat	egory				
	Distance from Site	Рор.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value	Ref.
	0 to $\frac{1}{4}$ mile		20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
	$>\frac{1}{4}$ to $\frac{1}{2}$ mile		20	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		
Ç	> 1/2 to 1		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
-17	> 1 to 2 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
	> 2 to 3 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
	>3 to 4 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
	Nearest	Well =			<u> </u>										Sum =		

GROUND WATER PATHWAY WORKSHEET (concluded)

WA	STE CHARACTERISTICS	Score	Data Type	Does not Apply
8.	If any Actual Contamination Targets exist for the aquifer or overlying aquifers, assign the calculated hazardous waste quantity score or a score of 100, whichever is greater; if no Actual Contamination Targets exist, assign the hazardous waste quantity score calculated for sources available to migrate to ground water.	10	E	
9.	Assign the highest ground water toxicity/mobility value from SI Table 3 or 4.	100		
10.	Multiply the ground water toxicity/mobility and hazardous waste quantity scores. Assign the Waste Characteristics score from the table below: (from HRS Table 2-7) Product	1000		·
	WC =	6	1	

Multiply LR by T and by WC. Divide the product by 82,500 to obtain the ground water pathway score for each aquifer. Select the highest aquifer score. If the pathway score is greater than 100, assign 100.


GROUND WATER PATHWAY SCORE:

LR X T X WC 82,500

52.89

(Maximum of 100)

SURFACE WATER PATHWAY

SURFACE WATER PATHWAY

Surface Water Observed Release Substances Summary Table

On SI Table 7, list the hazardous substances detected in surface water samples for the watershed, which can be attributed to the site. Include only those substances in observed releases (direct observation) or with concentration levels significantly above background levels. Obtain toxicity, persistence, bioaccumulation potential, and ecotoxicity values from SCDM. Enter the highest toxicity/persistence, toxicity/persistence/bioaccumulation, and ecotoxicity/persistence/ecobioaccumulation values in the spaces provided.

- TP = Toxicity x Persistence
- TPB = TP x bioaccumulation
- ETPB = EP x bioaccumulation (EP = ecotoxicity x persistence)

Drinking Water Actual Contamination Targets Summary Table

For an observed release at or beyond a drinking water intake, on SI Table 8 enter each hazardous substance by sample ID and the detected concentration. For surface water sediment samples detecting a hazardous substance at or beyond an intake, evaluate the intake as Level II contamination. Obtain benchmark, cancer risk, and reference dose concentrations for each substance from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages of the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population served by the intake as a Level I target. If the percentages are less than 100% or all are N/A, evaluate the population served by the intake as a Level II target.

SI TABLE 7:	Hazardous Substance	Bckgrd. Conc.	Toxicity/ Persistence	Toxicity/ Persis./ Bloaccum	Ecotoxicity/ Persis/ Ecobioaccum	References		
	: SURFACE WATER		WATER ACT				·	
Intake ID:	Sample Type		Lev	rel I	Level II	Population Serve	odRefere	nces
Sample ID	Hazardous Substance	Conc. (µg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RID	% of RfD
			Highest Percent		Sum of Percents		Sum of Percents	
Intake ID:	Sample Type		Lev	/el 1	Level II	Population Serve	edRefere	nces
Sample ID	Hazardous Substance	Conc. (µg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RID	% of RID
		<u> </u>		 				

SI TABLE 7: SURFACE WATER OBSERVED RELEASE SUBSTANCES

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET

THE PART OF THE PA			Data		
LIKELIHOOD OF RELEASE- OVERLAND/FLOOD MIGRATION		Score	Type	Refs	
1. OBSERVED RELEASE: If sampling data or direct	observation		T		
support a release to surface water in the watershed	assign a score				
of 550. Record observed release substances on S	i Table 7.				•
2. POTENTIAL TO RELEASE: Distance to surface w	rater: 10 (feet)				
If sampling data do not support a release to surface	water in the		1	SI	MARRATIC
watershed, use the table below to assign a score fr	om the table		E	J-	
below based on distance to surface water and floo	d frequency.				المن محددة
•				1	
Distance to surface water <2500 feet	500			1	
Distance to surface water >2500 feet, and:				ļ	1 .
Site in annual or 10-yr floodplain	500	<u>. </u>	1	j	· .
Site in 100-yr floodplain	400	50c	1		ļ
Site in 500-yr floodplain	300		1	l	İ
Site outside 500-yr floodplain	100		1 .	1	
			1	1	
Optionally, evaluate surface water potential to rele	ase			1	
according to HRS Section 4.1.2.1.2				<u> </u>	J
		500			
	LR =	300		•	
		•	Data		•
LIKELIHOOD OF RELEASE	PATION	Score		Refs	
GROUND WATER TO SURFACE WATER MIG	RATION	Score	Type T	Refs	3
GROUND WATER TO SURFACE WATER MIG	observation	Score		Refs].
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershee	observation d. assign a score	Score		Refs].
GROUND WATER TO SURFACE WATER MIG	observation d. assign a score	Score		Refs].
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on Support and Suppo	observation d, assign a score SI Table 7. on only for a	Score		Refs	
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on Support and Suppo	observation d, assign a score SI Table 7. on only for a	Score		Refs	•
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on NOTE: Evaluate ground water to surface water migratic surface water body that meets all of the following	observation d, assign a score SI Table 7. ion only for a conditions:	Score		Refs	
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on Solution of the surface water body that meets all of the following of the surface water is within 1 mile of site.	observation d, assign a score SI Table 7. ion only for a conditions:	Score		Refs	
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on Sourface water body that meets all of the following: 1) A portion of the surface water is within 1 mile of sit a containment factor greater than 0.	observation d, assign a score SI Table 7. con only for a conditions: e sources having	Score		Refs	
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on the NOTE: Evaluate ground water to surface water migratic surface water body that meets all of the following: 1) A portion of the surface water is within 1 mile of sit a containment factor greater than 0. 2) No aquifer discontinuity is established between the surface water is within 1 mile of sit a containment factor greater than 0.	observation d, assign a score SI Table 7. con only for a conditions: e sources having	Score		Refs	
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on the Surface water body that meets all of the following: 1) A portion of the surface water is within 1 mile of sit a containment factor greater than 0. 2) No aquifer discontinuity is established between the above portion of the surface water body.	observation d, assign a score SI Table 7. fon only for a conditions: e sources having the source and the	Score		Refs	
 OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on SNOTE: Evaluate ground water to surface water migrati surface water body that meets all of the following: A portion of the surface water is within 1 mile of sit a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the 	observation d, assign a score SI Table 7. fon only for a conditions: e sources having the source and the	Score		Refs	
 OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on SNOTE: Evaluate ground water to surface water migrati surface water body that meets all of the following: A portion of the surface water is within 1 mile of sit a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water. 	observation d, assign a score SI Table 7. fon only for a conditions: e sources having the source and the	Score		Refs	
 OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on SNOTE: Evaluate ground water to surface water migrati surface water body that meets all of the following: A portion of the surface water is within 1 mile of sit a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water. 	observation d, assign a score SI Table 7. fon only for a conditions: e sources having the source and the	Score		Refs	
 OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on SNOTE: Evaluate ground water to surface water migrati surface water body that meets all of the following: A portion of the surface water is within 1 mile of sit a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water. 	observation d, assign a score SI Table 7. fon only for a conditions: e sources having the source and the	Score		Refs	
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on SNOTE: Evaluate ground water to surface water migrati surface water body that meets all of the following: 1) A portion of the surface water is within 1 mile of sit a containment factor greater than 0. 2) No aquifer discontinuity is established between the above portion of the surface water body. 3) The top of the uppermost aquifer is at or above the surface water. Elevation of top of uppermost aquifer Elevation of bottom of surface water body.	observation d, assign a score SI Table 7. fon only for a conditions: e sources having he source and the he bottom of the	Score		Refs	
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on SNOTE: Evaluate ground water to surface water migrati surface water body that meets all of the following: 1) A portion of the surface water is within 1 mile of sit a containment factor greater than 0. 2) No aquifer discontinuity is established between the above portion of the surface water body. 3) The top of the uppermost aquifer is at or above the surface water. Elevation of top of uppermost aquifer Elevation of bottom of surface water body.	observation d, assign a score SI Table 7. ion only for a conditions: e sources having he source and the he bottom of the er potential to	Score		Refs	
1. OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on SNOTE: Evaluate ground water to surface water migrati surface water body that meets all of the following: 1) A portion of the surface water is within 1 mile of sit a containment factor greater than 0. 2) No aquifer discontinuity is established between the above portion of the surface water body. 3) The top of the uppermost aquifer is at or above the surface water. Elevation of top of uppermost aquifer Elevation of bottom of surface water body.	observation d, assign a score SI Table 7. ion only for a conditions: e sources having he source and the he bottom of the er potential to	Score		Refs	

LR =

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET (CONTINUED)

DRINKING WATER THREAT TARGETS	Score ·	Data	Defe	
Record the water body type, flow, and number of people served by each drinking water intake within the target distance limit in the watershed. If there is no drinking water intake within the target distance limit, assign 0 to factors 3, 4, and 5.	Score	Type	ì	NARRATIUS
Intake Name Water Body Type Flow People Served				sec nov
Are any intakes part of a blended system? Yes No If yes, attach a page to show apportionment calculations.				
3. ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates a drinking water intake has been exposed to a hazardous substance from the site, list the intake name and evaluate the factor score for the drinking water population (SI Table 8).				
Level I: people x 10 = Level II: people x 1 = Total =				
4. POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking water intakes for the watershed that have not been exposed to a hazardous substance from the site. Assign the population values from SI Table 9. Sum the values and multiply by 0.1.	0		·	
5. NEAREST INTAKE: Assign a score of 50 for any Level I Actual Contamination Drinking Water Targets for the watershed. Assign a score of 45 if there are Level II targets for the watershed, but no Level I targets. If no Actual Contamination Drinking Water Targets exist, assign a score for the intake nearest the PPE from SI Table 9. If no drinking water intakes exist, assign 0.	Э	·		. ••
 6. RESOURCES: Assign a score of 5 if one or more surface water resource applies; assign 0 if none applies. Irrigation (5 acre minimum) of commercial food crops or commercial forage crops Watering of commercial livestock Ingredient in commercial food preparation Major or designated water recreation area, excluding drinking water use 	5			
SUM OF TARGETS T=	5			

SI TABLE 9 (From HRS Table 4-14): DILUTION-WEIGHTED POPULATION VALUES FOR POTENTIAL CONTAMINATION FOR SURFACE WATER MIGRATION PATHWAY

					•	Num	ber of	people)			
Type of Surface Water Body	Pop.	Nearest Intake	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	Pop. Value
Minimal Stream (<10 cfs)		20	0	4	17	53	164	522	1,633	5,214	16,325	•
Small to moderate stream (10 to 100 cfs)		2	0	0.4	2	5	16	52	163	521	1,633	
Moderate to large stream (> 100 to 1,000 cfs)		0	0	0.04	0.2	0.5	, 2	5	16	52	163	
Large Stream to river (>1,000 to 10,000 cfs)		0	0	0.004	0.02	0.05	0.2	0.5	2	5	16	
Large River (> 10,000 to 100,000 cfs)		0	0	0	0.002	0.005	0.02	0.05	0.2	0.5	16	
Very Large River (>100,000 cfs)		0	0	0	0	0.001	0.002	0.005	0.02	0.05	0.2	
Shallow ocean zone or Great Lake (depth < 20 feet)		. 0	0	0	0.002	0.005	0.02	0.05	0.2	0.5	2	
Moderate ocean zone or Great Lake (Depth 20 to 200 feet)		0	0	0	0	0.001	0.002	0.005	0.02	0.05	0.2	
Deep ocean zone or Great Lake (depth > 200 feet)		0	0	0	0	0	0.001	0.003	0.008	0.03	0.08	
3-mile mixing zone in quiet flowing river (≥ 10 cfs)		10	0	2	9	26	82	261	817	2,607	8,163	
Nearest I	ntake =							,			Sum =	

References	

SURFACE WATER PATHWAY

Human Food Chain Actual Contamination Targets Summary Table

On SI Table 10, list the hazardous substances detected in sediment, aqueous, sessile benthic organism tissue, or fish tissue samples (taken from fish caught within the boundaries of the observed release) by sample ID and concentration. Evaluate fisheries within the boundaries of observed releases detected by sediment or aqueous samples as Level II, if at least one observed release substance has a bioaccumulation potential factor value of 500 or greater (see SI Table 7). Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For FDAAL benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate this portion of the fishery as subject to Level I concentrations. If the percentages are less than 100% or all are N/A, evaluate the fishery as a Level II target.

Sensitive Environment Actual Contamination Targets Summary Table

On SI Table 11, list each hazardous substance detected in aqueous or sediment samples at or beyond wetlands or a surface water sensitive environment by sample ID. Record the concentration. If contaminated sediments or tissues are detected at or beyond a sensitive environment, evaluate the sensitive environment as Level II. Obtain benchmark concentrations from SCDM. For AWQC/AALAC benchmarks, determine the highest percentage of benchmark of the substances detected in aqueous samples. If benchmark concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage equals or exceeds 100%, evaluate that part of the sensitive environment subject to Level I concentrations. If the percentage is less than 100%, or all are N/A, evaluate the sensitive environment as Level II.

Fishery ID:	10: HUMAN FOOD C	mple.Type		Level	1	Level II	References	
Sample ID	Hazardous Substance	Conc. (mg/kg)	Benchmark Concentration (FDAAL)	% of Benchmark	Cancer Risk Concentration.	% of Cancer Risk Concentration	RID	% of RID
					Circuit		Sum of	
			Highest Percent		Sum of Percents		Percents	
SI TABLE Environment	11: SENSITIVE ENV	IRONMENT	ACTUAL CO	NTAMINAT Leve	ION TARGETS	S FOR WATE	RSHED Environment Val	. · .
Sample ID	Hazardous Substance	Conc (μg/L)	Benchmark Concentration (AWQC or AALAC)	% of Benchmark	References			
						• • -		
<u> </u>			Highest Percent					
Environmen	1 ID: Sa	ample Type		Leve	11	Level II	Environment Va	lue
Sample If) Hazardous Substance	Conc (µg/L)	Benchmark Concentration (AWQC or AALAC)	% of Benchmark	References	<u>.</u>		
						 -	•	
						-		
		_1	Highest Percent			_		

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT WORKSHEET

HUMAN FOOD CHAIN THREAT T	ARGETS	0	Data		
Record the water body type and fle target distance limit. If there is no	ow for each fishery within the	Score	Type	Refs	1
distance limit, assign a score of 0 a	at the bottom of this page.			SI	ATTA,C
Fishery Name Water Body DELAWARE RIVER	KIUER Flow 5900 cfs		H		X
Species Production	lbe/vr			l	
Species Production Species Production	lbs/yr	•	1		 .
Fishery Name Water Body	11				- -
Species Production	lha A				İ
Species Production Species Production	los/yr		1		
Fishery Name Water Body	i i				
	I ł				•
Species Production_ Species Production_	lbs/yr				
FOOD CHAIN INDIVIDUAL			ĺ		
7. ACTUAL CONTAMINATION FISHE	RIES:				
If analytical evidence indicates that a hazardous substance with a bioacor equal to 500 (SI Table 10), assign Level I fishery. Assign 45 if there is I fishery.	Cumulation factor greater than	•			•
8. POTENTIAL CONTAMINATION FIS	SHERIES:				
If there is a release of a substance was greater than or equal to 500 to a way within the target distance limit, but the fisheries, assign a score of 20.	Itershed containing fisheries				
If there is no observed release to the for potential contamination fisheries the lowest flow at all fisheries within	from the table below using				
Lowest Flow	FCI Value			ſ	
<10 cfs	20			ŀ	
10 to 100 cfs	2			}	
>100 cfs, coastal tidal waters,				ļ	
oceans, or Great Lakes 3-mile mixing zone in quiet	0	0		}	
flowing river	10				
	FCI Value =				
	FOI Value =				
	SUM OF TARGETS T -				

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT WORKSHEET

When measuring length of wetlands that are located on both sides of a surface water body, sum both frontage lengths. For a sensitive environment that is more than one type, assign a value for each type.

								Data		
ENVIRO	NMENTAL	THRE	AT TARGETS	3			Score	Type	Refs	_
Re∞ sensi If the	rd the water tive environ re is no sen	body typ ment with sitive env	pe and flow for e hin the target dis vironment within bottom of the pa	ach surfa stance (s the targe	ee SI Ta	able 12).		-		
Environme	ot Name		Vater Body Type		Flow				}	١
TIL			DELAWARE	RIVER		A cfs	ļ		1	Ì
						cfs	ļ		1	Ì
						cfs				١
						cfs				١
									Ì	١
samp envir site.	oling data or conment has record this in	direct ob been ex nformation	N SENSITIVE E pservation indica posed to a haza on on SI Table 1 (SI Tables 13 a	ate any se ardous si 1, and as	ensitive ubstanc	e from the				
Environme	ent Name	Environn Value (S	nent Type and I Tables 13 & 14)	Multiplier Level I, 1 Level II)	for	Product				
				x	=					
				×	=		,	i		
				×	=					
			~	x	=	,				
L		<u> </u>				Sum =		<u></u>		
10. POT	ENTIAL CO	NTAMIN	IATION SENSIT	IVE ENV	IRONM	ENTS:		1		
Flow	Dilution Wei	abt	Environment Typ	e and	Pot.	Product				
FDW .	(SI Table 12		Value (SI Tables	13 & 14)					į	
NA cfs	0.00)	25	X	0.1 =					
74.40.5	0.00						0.0025		1	
cfs		<u> </u>		X	0.1 =					
cfs		*		X	0.1 =		·		•	
cfs		x		x	0.1 =					
cfs		x		x	0.1 =					
						Sum =		4-		_
•						T =	0.0025	1		

SI TABLE 12 (HRS Table 4-13): SURFACE WATER DILUTION WEIGHTS

Type of Surface Water Body		Assigned Dilution Weight
Descriptor	Flow Characteristics	
Minimal stream	< 10 cfs	1
Small to moderate stream	10 to 100 cfs	0.1
Moderate to large stream	> 100 to 1,000 cfs	0.01
Large stream to river	> 1,000 to 10,000 cfs	0.001
Large river	> 10,000 to 100,000 cfs	0.0001
Very large river	> 100,000 cfs	0.00001
Coastal tidal waters	Flow not applicable; depth not applicable	0.001
Shallow ocean zone or Great Lake	Flow not applicable; depth less than 20 feet	0.001
Moderate depth ocean zone or Great Lake	Flow not applicable; depth 20 to 200 feet	0.0001
Deep ocean zone or Great Lake	Flow not applicable; depth greater than 200 feet	0.000005
3-mile mixing zone in quiet flowing river	10 cfs or greater	0.5

C-30

SI TABLE 13 (HRS TABLE 4-23): SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Critical habitat for Federal designated endangered or threatened species	100
Marine Sanctuary	
National Park	
Designated Federal Wilderness Area	ļ
Ecologically important areas identified under the Coastal Zone Wilderness Act	1
Sensitive Areas identified under the National Estuary Program or Near Coastal	
Water Program of the Clean Water Act	1
Critical Areas identified under the Clean Lakes Program of the Clean Water Act	}
(subareas in lakes or entire small lakes)	
National Monument (air pathway only)	1
National Seashore Recreation Area	1
National Lakeshore Recreation Area	
Habitat known to be used by Federal designated or proposed endangered or threatened species	75
National Preserve	İ
National or State Wildlife Refuge	1
Unit of Coastal Barrier Resources System	
Coastal Barrier (undeveloped)	
Federal land designated for the protection of natural ecosystems	
Administratively Proposed Federal Wilderness Area	
Spawning areas critical for the maintenance of fish/shellfish species within a	
river system, bay, or estuary	
Migratory pathways and feeding areas critical for the maintenance of	
anadromous fish species within river reaches or areas in lakes or coastal	
tidal waters in which the fish spend extended periods of time	
Terrestrial areas utilized by large or dense aggregations of vertebrate animals	1
(semi-aquatic foragers) for breeding	
National river reach designated as recreational	
Habitat known to be used by State designated endangered or threatened species	50
Habitat known to be used by a species under review as to its Federal endangered	
or threatened status	
Coastal Barrier (partially developed)	1
Federally designated Scenic or Wild River	
State land designated for wildlife or game management	25
State designated Scenic or Wild River	1
State designated Natural Area	·
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated areas for the protection of maintenance of aquatic life under the Clean Water	5
Act	
Wetlands See Si Table 14 (Surface Water Pathway) or Si Table 23 (Air Pathway)	

SI TABLE 14 (HRS TABLE 4-24): SURFACE WATER WETLANDS FRONTAGE VALUES

Total Length of Wetlands	Assigned Value
Less than 0.1 mile	0
0.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater than 2 to 3 miles	75
Greater than 3 to 4 miles	100
Greater than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater than 12 to 16 miles	350
Greater than 16 to 20 miles	450
Greater than 20 miles	500

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

Score WASTE CHARACTERISTICS If an Actual Contamination Target (drinking water, human food chain, or environmental threat) exists for the watershed, assign the calculated hazardous waste quantity score, or a score of 100, whichever is greater. 15. Assign the highest value from SI Table 7 (observed release) or SI Table 3 (no observed release) for the hazardous substance waste characterization factors below. Multiply each by the surface water hazardous waste quantity score and determine the waste characteristics score for each threat. WC Score (from Table) (Maximum of 100) HWQ Product Substance Value **Drinking Water Threat** 18 10 100000 10000 Toxicity/Persistence Food Chain Threat Toxicity/Persistence 5, x 109 5 × 108 10 100 Bioaccumulation Environmental Threat Ecotoxicity/Persistence/ 5× 108 5×101 10 . 100 Ecobioaccumulation WC Score Product ō 1 >0 to <10 2 10 to <100 3 100 to <1,000 1,000 to < 10,000 6 10,000 to <1E + 05 10 18 1E + 05 to <1E + 06 32 1E + 06 to <1E + 07 56 1E + 07 to <1E + 08 100 . 1E + 08 to <1E + 09 180 1E + 09 to <1E + 10 320 1E+10 to <1E+11 560 1E+11 to <1E+12 1000 1E + 12 or greater

SURFACE WATER PATHWAY THREAT SCORES

SURPACE WATE	TAULUAL III	.24. 000	Pathway Waste	Threat Score
Threat	Likelihood of Release (LR) Score	Targets (T) S∞re	Characteristics (WC) Score (determined above)	<u>LR x T x WC</u> 82,500
Drinking Water	500	5	193	(maximum of 100)
Human Food Chain	5 o c	0	100	(maximum of 100)
Environmental	500	0.0025	10.0	(maximum of 60)

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

(maximum of 100)

SOIL EXPOSURE PATHWAY

If there is no observed contamination (e.g., ground water plume with no known surface source), do not evaluate the soil exposure pathway. Discuss evidence for no soil exposure pathway.

Soil Exposure Resident Population Targets Summary

For each property (duplicate page 35 as necessary):

If there is an area of observed contamination on the property and within 200 feet of a residence, school, or day care center, enter on Table 15 each hazardous substance by sample ID. Record the detected concentration. Obtain cancer risk, and reference dose concentrations from SCDM. Sum the cancer risk and reference dose percentages for the substances listed. If cancer risk or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the residents and students as Level I. If both percentages are less than 100% or all are N/A, evaluate the targets as Level II.

SI TABLE 15: SOIL EXPOSURE RESIDENT POPULATION TARGETS

Residence ID: _		•	Level I	Level	11	Population		<u> </u>
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RíD	% of RID	Toxicity Value	References
							·	
			Highest Percent		Sum of Percents	·	Sum of Percents	·
Boeidanca ID:	·	_	Level I	Leve	111	Population		
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RID	% of RfD	Toxicity Value	References
	,		Highest Percent		Sum of Percents .		Sum of Percents	
Residence ID:			Level I	Leve	ı II	Population	· · · · · · · · · · · · · · · · · · ·	
-Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RID	% of RfD	Toxicity Value	References
			Highest Percent		Sum of Percents		Sum of Percents	

SOIL EXPOSURE PATHWAY WORKSHEET RESIDENT POPULATION THREAT

LIKELIHOOD OF EXPOSURE		Score	Data Type	Refs	
OBSERVED CONTAMINATION: If evidence ind observed contamination (depth of 2 feet or less), 550; otherwise, assign a 0. Note that a likelihood score of 0 results in a soil exposure pathway score.	assign a score of	550	HRS		ARRATIUE SECTION
	LE =	550		I	J
TARGETS					•
RESIDENT POPULATION: Determine the num occupying residences or attending school or day 200 feet of areas of observed contamination (History).	care on or within				
Level I: people x 10 =	Sum =	0			
 RESIDENT INDIVIDUAL: Assign a score of 50 if resident population exists. Assign a score of 45 targets but no Level I targets. If no resident population between the companion of the	if there are Level II ulation exists (i.e., tion 5.1.3).	0			·
4. WORKERS: Assign a score from the table below number of workers at the site and nearby facilities observed contamination associated with the site Number of Workers 0 1 to 100 101 to 1,000 >1,000	v for the total	O			
TERRESTRIAL SENSITIVE ENVIRONMENTS: A each terrestrial sensitive environment (SI Table 1) observed contamination. Terrestrial Sensitive Environment Type 6. RESOURCES: Assign a score of 5 if any one or in the sensitive environment Type 6. RESOURCES: Assign a score of 5 if any one or in the sensitive environment Type 6. RESOURCES: Assign a score of 5 if any one or in the sensitive environment Type 6. RESOURCES: Assign a score of 5 if any one or in the sensitive environment Type	Value Sum =	0	·		
following resources is present on an area of obse contamination at the site; assign 0 if none applies Commercial agriculture Commercial silviculture Commercial livestock production or commercial grazing	erved i.	0	·		
Total :	of Targets T=	O			

SI TABLE 16 (HRS TABLE 5-5): SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

TERRESTRIAL SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Terrestrial critical habitat for Federal designated endangered or threatened species • :	100
National Park	1
Designated Federal Wilderness Area	
National Monument	
Terrestrial habitat known to be used by Federal designated or proposed threatened or endangered species National Preserve (terrestrial) National or State terrestrial Wildlife Refuge Federal land designated for protection of natural ecosystems Administratively proposed Federal Wilderness Area	. 75
Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	
Terrestrial habitat used by State designated endangered or threatened species Terrestrial habitat used by species under review for Federal designated endangered or threatened status	50
State lands designated for wildlife or game management State designated Natural Areas Particular areas, relatively small in size, important to maintenance of unique biotic communities	25

SOIL EXPOSURE PATHWAY WORKSHEET NEARBY POPULATION THREAT

LIKELIHOOD OF EXPOSURE 7. Attractiveness/Accessibility	Score	Data Type	Ref.
(from SI Table 17 or HRS Table 5-6) Value5			SI NARE ATI
Area of Contamination (from SI Table 18 or HRS Table 5-7) Value		HRS	DIRECT CONTAC SECTION
Likelihood of Exposure (from SI Table 19 or HRS Table 5-8)			
LE :	= 5		

	RGETS	Score	Data Type	Ref.
8.	Assign a score of 0 if Level I or Level II resident individual has been evaluated or if no individuals live within 1/4 mile travel distance of an area of observed contamination. Assign a score of 1 if nearby population is within 1/4 mile travel distance and no Level I or Level II resident population has been evaluated.	1	E	GEMS
9.	Determine the population within 1 mile travel distance that is not exposed to a hazardous substance from the site (i.e., properties that are not determined to be Level I or Level II); record the population for each distance category in SI Table 20 (HRS Table 5-10). Sum the population values and multiply by 0.1)	99		
	T =	10.9		

SI TABLE 17 (HRS TABLE 5-6): ATTRACTIVENESS/ACCESSIBILITY VALUES

Area of Observed Contamination	Assigned Value
Designated recreational area	100
Regularly used for public recreation (for example, vacant lots in urban	75
area) Accessible and unique recreational area (for example, vacant lots in urban area)	75
Moderately accessible (may have some access improvements-for example, grayel road) with some public recreation use	50
Slightly accessible (for example, extremely rural area with no road mprovement) with some public recreation use	25
Accessible with no public recreation use	10
Surrounded by maintained fence or combination of maintained fence and natural barriers	5
Physically inaccessible to public, with no evidence of public recreation use	0

SI TABLE 18 (HRS TABLE 5-7): AREA OF CONTAMINATION FACTOR VALUES

Total area of the areas of observed contamination (square feet)	Assigned Value
≤ to 5,000	5
> 5,000 to 125,000	20
> 125,000 to 250,000	40
> 250,000 to 375,000	60
> 375,000 to 500,000	.80
> 500,000	100

SI TABLE 19 (HRS TABLE 5-8): NEARBY POPULATION LIKELIHOOD OF EXPOSURE FACTOR VALUES

AREA OF CONTAMINATION	ATTRACTIVENESS/ACCESSIBILITY FACTOR VALUE								
FACTOR VALUE	100	75	50	25	10	5	0		
100	. 500	500	375	250	125	50	0		
80	500.	375	250	125	50	25	· . 0		
60	375	250	125	50	25	5	0		
40	250	125	50	25	5	5	0		
20	125	50	25	5	5	5	0		
5	50	25	5	5	5	5	0		

SI TABLE 20 (HRS TABLE 5-10): DISTANCE-WEIGHTED POPULATION VALUES FOR NEARBY POPULATION THREAT

Travel Distance			,		Nu	mber c	of peop	le with	in the tra	avel dista	nce cated	orv		
Category (miles)	Pop.	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to	1,001 to 3,000	3,001 to	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	Pop.
Greater than 0 to $\frac{1}{4}$	100	0	0.1	0.4	1.0	. 4	13	41	130	408	1,303	4,081	13,034	1 }
Greater than $\frac{1}{4}$ to $\frac{1}{2}$	3505	0	0.05	0.2	0.7	2	7	20	65	204	652	2,041	6,517	65
Greater than $\frac{1}{2}$ to 1	8265	0	0.02	0.1	0.3	1	3	10	33	102	326	1,020	3,258	33
									Reference	:e(s) G	MS.		Cum	99

SOIL EXPOSURE PATHWAY WORKSHEET (concluded)

WAS	TE	CHA	NRA	CTER	IST	ICS"
V V M -						

10. /	Assign the hazardous waste qu	uantity score calcu	lated for soil exposure	
			• .	10
11.	Assign the highest toxicity valu	ie from SI Table 46	73	
				10000
12.	Multiply the toxicity and hazard Waste Characteristics score fro Product 0 >0 to <10 10 to <100 100 to <100 1,000 to < 10,000 1,000 to < 10,000 10,000 to <1E + 05 1E + 05 to <1E + 06 1E + 06 to <1E + 07 1E + 07 to <1E + 08 1E + 08 or greater	waste quantity om the table below WC Score 0 1 2 3 6 10 18 32 56 100	scores. Assign the	wc = 10
(Likeliho	ENT POPULATION THRE bod of Exposure, Question 1; = Sum of Questions 2, 3, 4, 5,	0		
NEARB	BY POPULATION THREA	T SCORE:	•	

(Likelihood of Exposure, Question 7; Targets = Sum of Questions 8, 9) LE X T X WC 82,500 0.006

SOIL EXPOSURE PATHWAY SCORE: Resident Population Threat + Nearby Population Threat () . 006 (Maximum of 100)

AIR PATHWAY

Air Pathway Observed Substances Summary Table

On SI Table 21, list the hazardous substances detected in air samples of a release from the site. Include only those substances with concentrations significantly greater than background levels. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For NAAQS/NESHAPS benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate targets in the distance category from which the sample was taken and any closer distance categories as Level I. If the percentages are less than 100% or all are N/A, evaluate targets in that distance category and any closer distance categories that are not Level I as Level II.

SI TABLE 21: AIR PATHWAY OBSERVED RELEASE SUBSTANCES

Sample ID:		Le	vel I L	evel II	Distance from S	ources (mi)	References	
Hazardous Substance	Conc. (µg/m³)	Gaseous Particulate	Benchmark Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RíD	% of RfD
riazardous odostanos	W W							
	Highest Toxicity/		Highest Percent		Sum of Percents		Sum of Percents	
•	Mobility		' t		Distance from S	Sources (mi)	References	·
Sample ID:		L(evel I L Benchmark	evel II	Distance from C	(,		
Hazardous Substance	Conc. (µg/m³)	Toxicity/ Mobility	Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RID	% of RfD
Hazardous Cassianes							·	
	Highest Toxicity/		Highest Percent		Sum of Percents		Sum of Percents	
	Mobility	L	1 i picoiii					
Sample ID:		L	.evel I	Level II	Distance from	Sources (mi)	References	
Hazardous Substance	Conc. (µg/m³)	Toxicity/ Mobility	Benchmark Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD ·	% of RID
Mazardone Substaine	COINT (JESTIN)							
	Highest Toxicity		Highest		Sum of		Sum of	
	Mobility		Percent	·	Percents	L	Percents	I

	AIR PATHWAY WORKSHEE	:T			
11	KELIHOOD OF RELEASE		Data		
1	OBSERVED RELEASE: If sampling data or direct observation	Scóre	Туре	Refs	,
	support a release to air, assign a score of 550. Record observed release substances on SI Table 21			SI N	AREAT
2.	POTENTIAL TO RELEASE: If sampling data do not support a release to air, assign a score of 500. Optionally, evaluate air migration gaseous and particulate potential to release (HRS Section 6.1.2)	5 0 0	E	AIR	εςπο
T.	ARGETS . LR =	500			1
	ACTUAL CONTAMINATION POPULATION: Determine the number	1			٦.
	of people within the target distance limit subject to exposure from a release of a hazardous substance to the air.				4
	a) Level II: people x 10 =/ b) Level III: people x 1 =/ Total =				4
	POTENTIAL TARGET POPULATION: Determine the number of people within the target distance limit not subject to exposure from a release of a hazardous substance to the air, and assign the total population score from SI Table 22.	106.5			
	NEAREST INDIVIDUAL: Assign a score of 50 if there are any Level I targets. Assign a score of 45 if there are Level II targets but no Level I targets. If no Actual Contamination Population exists, assign the Nearest Individual score from SI Table 22.	7			
0.	ACTUAL CONTAMINATION SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (SI/Table 13) and wetland acreage values (SI Table 23) for environments subject to exposure from the release of a hazardous substance to the air.	,			
	Sensitive Environment Type / Value				
					÷,
	Wetland Acreage Value	·			
	Value Value				
			c		
7.	POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS: Use SI Table 24 to evaluate sensitive environments not subject to exposure from a release.	·		-	
8.	RESOURCES: Assign a score of 5 if one or more air resources applies within 1/2 mile of a source; assign a 0 if none applies Commercial agriculture Commercial silviculture	•		·	
	Major or designated recreation area				
	/	1135			

SI TABLE 22 (From HRS TABLE 6-17): VALUES FOR POTENTIAL CONTAMINATION AIR TARGET POPULATIONS

Г					Number of People within the Distance Category											
	Distance	Pop.	Nearest Individual (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value
-	On a source	· 0	20	4	.17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455	0
	0 to $\frac{1}{4}$ mile	100	*	1	4	13	41	131	408	1,304	4,081	13,034	40,812	130,340	408,114	13
ŀ	> \frac{1}{4} \lo \frac{1}{2}	3505	2	0.2	0.9	3	9	28	88	282	882	2,815	8,815	28,153	88,153	282
ŀ	mile > 1/2 to 1	8265	1	0.06	0.3	0.9	3	8	26	83	261	834	2,612	8,342	26,119	83
C-45	mile > 1 to 2 miles	28150	o [']	0.02	0.09	0.3	0.8	3	8	27	83	266	833	2,659	8,326	83
0.	> 2 to 3 miles	111305	0	0.009	0.04	0.1	0.4	1	4	12	38	120	375	1,199	3,755	375
	>3 to 4 miles	160 095	0	0.005	0.02	0.07	0.2	0.7	2	. 7	28	73	229	730	2,285	229
ļ		Nearest dividual =	7		1	1									Sum =	1065

References 6-EMS

^{*} Score = 20 if the Nearest Individual is within $\frac{1}{8}$ mile of a source; score = 7 if the Nearest Individual is between $\frac{1}{8}$ and $\frac{1}{4}$ mile of a source.

SI TABLE 23 (HRS TABLE 6-18): AIR PATHWAY VALUES FOR WETLAND AREA

Wetland Area	Assigned Value
< 1 acre	0
1 to 50 acres	25
> 50 to 100 acres	75
> 100 to 150 acres	125
> 150 to 200 acres	175
> 200 to 300 acres	250
> 300 to 400 acres	350
> 400 to 500 acres	450
> 500 acres	500

SI TABLE 24: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS

	Distance	Compile E	- ₁
Distance	Weight	Sensitive Environment Type and Value (from SI Tables 13 and 20)	Product
On a Source	0.10	×	,
		x	
0 to 1/4 mile	0.025	x	
		x	 -
	.	x	
1/4 to 1/2 mile	0.0054	X	f
		х	
		x	
1/2 to 1 mile	0.0016	х .	
		х	
		x	
. 1 to 2 miles	0.0005	х	
1		X	
		x	
2 to 3 miles	0.00023	х	
		x	
		x	
3 to 4 miles	0.00014	х .	
		X	·
		X	·
> 4 miles	0	x	

Total Environments Score =

C-46

AIR PATHWAY (concluded)

WASTE CHARACTERISTICS

9.	If any Actual Contamination Targets assign the calculated hazardous wof 100, whichever is greater; if the Targets for the air pathway, assign sources available to air migration.		10		
10.	Assign the highest air toxicity/mob	Table 21.			
11.	Multiply the air pathway toxicity/moquantity scores. Assign the Waste table below: Product	WC Score WC Score 0 1 2 3 6 10 18 32 56 100	us waste core from the	WC =	2.

AIR PATHWAY SCORE:

LE x T x WC 82,500 1. 36 (maximum of 100)

SITE SCORE CALCULATION	S	S ²
GROUND WATER PATHWAY SCORE (SGW)	52.89	2797
SURFACE WATER PATHWAY SCORE (Ssw) SOIL EXPOSURE (Ss)	0.5	0.25
AIR PATHWAY SCORE (SA)	0.006	0.000036
TAMINAT SCORE (SA)	1.36	1.85
SITE SCORE $\sqrt{\frac{S_{GW}^2 + S_{SW}^2 + S_S^2 + S_A^2}{4}}$	-	26.4

COMMENTS		
	•	
		•
		·
		·
•		
,3	•	
-		ļ
		Ī
	•	
		•
	•	ļ
	was desirable to the same of t	Ì
•		
•		• 1
·		•
		i
·		1
•		
<u> </u>		}
•		